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Forecasting indoor pollutant concentrations

using Fast Fourier Transform and Regime

Switching Models

Rachid Ouaret1,2, Anda Ionescu 2, Olivier Ramalho1,
Viorel Petrehus3 and Yves Candau2,

{rachid.ouaret}@cstb.fr

Abstract. This paper considers the possibility that the high-frequency
formaldehyde concentration follows a regime switching process. It ex-
plores the calibration of models built on Threshold Autoregression (TAR)
combined with Fast Fourier Transform (FFT) for short-term forecasting
of indoor formaldehyde fluctuation. The methodology uses signal decom-
position with filtering of the original raw time series into different FFT
components removing some high frequencies. Results from FFT-TAR
model could predict HCHO concentration patterns with acceptable ac-
curacy and suggest that there is benefit by taking choice of “cutoff” fre-
quency. The mean absolute percentage error (MAPE) of the best scheme
for 10-h (600); one day (1440) and 40h ahead out of sample forecasts,
were obtained as follows: 3.54%, 14.36% and 15.64%.

Keywords: Forecasting, Threshold Autoregression (TAR), Fast Fourier
Transform (FFT), high-frequency, formaldehyde.

1 Introduction

Due to high levels of indoor pollutants and usually 80% of our time spent in-
doors, significant health problems (eg. respiratory and cardiovascular) can be
caused by exposure to indoor air. Therefore, estimating future values of indoor
pollutant concentrations is of particular interest in the field of indoor air quality
(IAQ). One of the major contaminant in indoor air is formaldehyde (HCHO). It
originates from indoor materials such as particleboard, plywood, and combustion
(e.g. tobacco smoke) and photochemistry. The dynamics of indoor formaldehyde
concentration in real world environments and its relation to sources and climatic
variables are complex and little studied. While the outdoor air research has
much experience in long monitoring studies with advanced statistical modeling,
the field of indoor air quality lacks monitoring studies of pollutant concentra-
tions with a short time-step. The majority of papers published on air quality
forecasting uses low-frequency data, i.e. weekly, monthly, quarterly, annual, etc.
However, there are very few studies on shorter time interval environmental time
series. Granger [1] argued that high-frequency data pose a new set of forecasting
problems, demanding new approaches.
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In this paper, we propose a new approach in order to predict the indoor
pollutant concentration of formaldehyde. The emission mechanisms of HCHO
from materials are complex and depend on several parameters that vary over
time like temperature and humidity. The temporal variability of these parame-
ters is most often unknown and their physical models are often difficult to build
for indoor air pollutants. In this work we develop a method to forecast short-
term formaldehyde indoor concentrations using nonlinear time series models and
Fourier transform. The succession of phases with high and low variability and
the presence of several mean shifts in HCHO concentration over time can be
highlighted by regime switching models. In such a case, the dynamic behavior
of HCHO depends on the regime that occurs at different time scales. It seems
therefore natural to expect that Regime Switching Models may improve predic-
tion of HCHO indoor concentrations. The forecasting model can also be used to
provide valuable feedback for the physical processes. To our knowledge, this is
the first study exploring HCHO concentration forecasting by nonlinear stochastic
time series. The determinist part of HCHO concentration was modeled by mul-
tiple Fast Fourier Transform (FFT) which were incorporated within two types
of Regimes Switching Models: Smooth Threshold Auto-Regressive (STAR) and
Self Exciting Threshold Autoregressive (SETAR) models. In order to compare
their performance, the root mean square error (RMSE) and the mean absolute
percentage error (MAPE) were calculated for each forecast.

Different sub-samples of the given historical data were used to compare the
different forecasting models. The predicted data were calculated up to 2 days
ahead at most. The lack of references about forecasting in the field of indoor
air quality is the main reason for us to use a multiple stage and hybrid ap-
proach. From that perspective, hybridization of many and varied models using
complementary and common approaches and strategies is leading to a kind of ro-
bustness. Only two-regime switching models are considered in this study. There
are mainly two reasons for this: on the one hand, it is difficult to check the sta-
bility of multiple regime parameters requiring several statistical hypothesis and,
on the other hand, there is no fully elaborate forecasting methodology for these
models.

All the computations involved in the present task were carried out on R
(http://www.r-project.org/). The packages Nonlinear Time Series Analysis
(RTISEAN) [2] and Nonlinear time series models with regime switching (ts-
Dyn) - with personal very small changes –[4, 3] were freely used; all the other
complementary functions and simulations were coded by us.

2 Data, statistical proprieties and methodology

The indoor formaldehyde concentration was monitored every minute in an open-
plan office occupied by 6-8 persons over 21 days, i.e. 30,000 observations. The
trajectory, the histogram, the periodogram and the autocorrelation function are
provided in the following figures (Fig. 1 (A)). The observed mean is 7.85 ppb, the
standard deviation equals to 3.64 and the kurtosis is not very high (-0.4). The
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fluctuation of the HCHO time series shows a relative stability during the first
days and some small oscillations during the two days that followed. After that,
the general behavior of the time series changed abruptly and became very vari-
able toward the end of the period. The figure 1(C) presents the histogram and
density estimates of the distribution of HCHO concentration which reveal three
modes and two gaps around 7 ppb and 10 ppb. The data show an asymmetrical
distribution with high density concentrations at the left side and a decreasing
density towards the right side. The histogram shape reflects the presence of at
least two different processes being “mixed” in the HCHO time dynamics. This
indicates that the mean of the process shifted over the measuring period. We
observe that the data are not second order stationary; there exists a trend with
abrupt changes. This explains the form of the autocorrelation function (ACF)
that does not quickly decrease towards zero and the spectral density explodes in
many frequencies close to zero (fig 1(B and D)). Thus, according to [5] and [6]
definitions, the HCHO concentration seems to exhibit a long memory behavior
in the covariance sense. Fig.1 (B) shows the periodogram close to zero of HCHO
time series; the frequencies corresponding to dominant periods were chosen to
construct the first FFT component which represents the general trend, the fol-
lowing FFT components were identified by the same method. Once significant
peaks have been isolated from the raw data and the successive residuals; the next
step is to rebuild the HCHO in the time domain. The HCHO time series is a
mix of several unknown source emissions that makes the extraction of dominant
frequency quite difficult because of the random noise. As shown in the Fig.1(B)
(more clearly in Fig (3a)), the noise manifests itself across the entire spectrum,
including within high frequencies where the time series should have little energy.

Fig.2 illustrates the steps describing the research methodology used in this
study. The process begins first with the identification of the non linear class
model which is a TARmodel. The next step involved identifying the adequate fre-
quencies cutoff of FFTs components which are obtained successively by subtrac-
tion (5 time). The FFTs components were modeled using SETAR and LSTAR
models by varying the parametersm and τ ; that are described later in this paper
(see (5)). In reality, using whether SETAR or LSTAR could change very slightly
the accuracy of prediction, thus only the SETAR accuracy is presented. In model
selection-prediction, both forecasting accuracy (in test set) and classical indica-
tors - Akaike information and Schwarz information criterion - (in learning test)
were used to evaluate the most appropriate models1.

3 Models

3.1 Threshold models

The underlying idea behind the construction of a TAR model for IAQ is to rep-
resent the behavior of HCHO concentration by two separate regimes. Generally,

1 In diagnostic checking tests, we only consider (for now) the accuracy is important,
even some models may exhibit the presence of unit root in both regimes.
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Fig. 1: Descriptive statistics of HCHO: trajectory, raw periodogram, density and
ACF.
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Forecasting HCHO concentrations using FFT-TAR models. 5

the transitions between regimes in Threshold models (TAR) models are ruled by
mechanisms performing with a transition variable, a threshold value and a func-
tion of transition. In this study, we restrict our attention to models for which the
transition mechanism between regimes is assumed to be observed and, in each
regime the dynamics behavior is described by an autoregressive model with an
identical delay. Initially proposed extensively by Tong ([7, 9, 8]), the TAR model
is defined as follows: for a k -dimensional time series {Xt}t∈Z

and for all t, Jt is
the transition variable relative to threshold value c; the pair (Xt, Jt) is an TAR
with two regimes TAR(2; p, p)

Xt =
(

Φ1
0 + Φ1

1Xt−1 + · · ·+ Φ1
pXt−p

)

(1− IJt>c)
+
(

Φ2
0 + Φ2

1Xt−1 + · · ·+ Φ2
pXt−p

)

(IJt>c) + εt
(1)

where c ∈ R and εt is an i.i.d white noise process conditional upon the Ωt−1 =
{Xt−1, Xt−2, . . . , , Xt−p} with E (εt | Ωt−1) = 0 and E

(

ε2t | Ωt−1

)

= σ2. The
transition function is given by:

IJt>c =

{

1 is Jt > c

0 otherwise
. (2)

A special case arises when the transition variable Jt is taken as the lagged
value of the time series itself, that is, it should be any of {Xt−1, Xt−2, . . . , , Xt−p}.
The resulting model for any lagged value of Xt taken as Jt in equation (1) is
Self-Exciting TAR (SETAR). Because of the discrete nature of the threshold
variable, the transition between regimes is carried out abruptly. In fact, there
are some periods where the time series does not transit abruptly between regimes;
therefore it is possible to replace the transition function in (2) by a continuous
function G (Jt; γ, c) bounded between 0 and 1; the resulting model is called
Smooth Transition AR (STAR) model and is given by:

Xt =
(

Φ1
0 + Φ1

1Xt−1 + · · ·+ Φ1
pXt−p

)

(1−G (Jt; γ, c))
+
(

Φ2
0 + Φ2

1Xt−1 + · · ·+ Φ2
pXt−p

)

(G (Jt; γ, c)) + εt
, (3)

where the parameter γ determines the smoothness of the change in the value of
the transition function. In this paper, we choose as in many other works ([10]),
the logistic function:

G (Jt; γ, c) =
1

1 + exp {−γ (Jt − c)}
(4)

The function G (Jt; γ, c) in the STAR models switches instantaneously between
the two regimes as soon as the quantity (Jt − c) changes its sign and this, for γ
sufficiently large. Consequently the function G (Jt; γ, c) approximates the indi-
cator function IJt

in the model TAR (in equation 1) (or SETAR if Jt = Xt−d

(in equation 3). When γ → 0, (G (Jt; γ, c) 1/2) then the STAR model reduces
to an AR linear model.

In our work several simulations were carried out to determine γ; the choice
of γ is done according to the accuracy of prediction (we have avoided the two
extremes mentioned above), and have set it at one (γ = 1).
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In this work, we have chosen to reformulate the models (1) and (3) by intro-
ducing the delay time series of embedding dimension m and delay time τ , and
the threshold delay δ in both equations system.

Xt =
(

Φ1
0 + Φ1

1Xt−τ + · · ·+ Φ1
(m−1)Xt−(m−1)τ

)

(1−G (Jt; γ,Xt−δτ ))

+
(

Φ2
0 + Φ2

1Xt−τ + · · ·+ Φ2
(m−1)Xt−(m−1)τ

)

(G (Jt; γ,Xt−δτ )) + εt
(5)

All simulations were carried out by varying m, τ and δ for de-noising FFT
components and the choice was done once the models gave us a good forecast. As
we can see, doing all possible combinations is not an easy task due to the large
data set, because it requires a lot of computational resources. As the frequency of
the time series increases the required computational time for simulation become
high, demanding a good combination in the models parameters that will make
the most efficient best setup.

3.2 Removing noise and time series reconstruction using FFT

The first motivation for working in the frequency domain is that removing noise
from a temporal signal can be accomplished, at least approximately, by remov-
ing the signal’s “high frequency components”. The second reason is that many
operations are easier, both computationally and conceptually, in the frequency
domain. In general way, the harmonic analysis decompose time series over os-
cillatory waveforms that reveal many properties and provide a path to sparse
representations.

FFT is an efficient method for computing the discrete Fourier transform
(DFT). The algorithm for computing the DFT was primarily attributed to Coo-
ley and Tukey [12]. Computationally, the DFT is of the order of O

(

T 2
)

while
the FFT is of the order of O (T log2 T ). If {xt}t=0;...,(T−1) is the time series of
HCHO, its DFT can be written as:

Hk =

T−1
∑

t=0

xte
−2πj kt

T ; with k = 0, . . . , T − 1 (6)

As mentioned in the section (2) the random noise pollutes the signal. Thus a
very simple approach to noise reduction is to determine the “cutoff” frequencies;
this was performed by observing the different resolution after reconstruction i.e
based in visual insight. This is done by the inverse FFT (IFFT)

xt =
1

T

T−1
∑

t=0

Hke
2πj kt

T (7)

Once high frequencies removed from the spectrum, the associated signals
can be reconstructed in the time domain using IFFT. Each reconstructed FFT
component into the time domain corresponds to the real part of the HCHO
Fourier term.
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In Figure 3 (a-f) we show the reconstruction based on FFT of the HCHO time
series; which represents different patterns and characteristics inside the raw time
series. The first FFT component presents the general trend that captures the
most important information in terms of representativeness. The rest of oscillatory
components shows the different inter-day variability. The second FFT component
exhibits roughly the same amplitude over 15 days, after that the shape of the
oscillations changed near the end of the meausrement duration. The amplitude
modulations of the 3rd, 4th and 5th FFT oscillations are similar, but with small
differences in variance. Several simulations were carried out in order to determine
the various plausible scenarios. In other word, we begin by whether fixing m and
τ and varying the cutoff frequency, or vice versa. The cutoff varying frequencies
of each FFT and the parameters of SETAR model for modeling the two different
sets are shown in Tab 1. The combined models are compared among each other
with corresponding data set for multiple step-ahead forecast.

Defining sets scenarios Simulation conditions
FFT1 FFT2 FFT3 FFT4 FFT5
Periods (ωi) included in the FFTs

Set1

scenario1 S1; m = 3, τ = 1 2.08 days 25 h 16.6 h 12.5 h 10 h
scenario2 S2; m = 3, τ = 1 25 h 16.6 h 12.5 h 10 h 7.14 h
scenario3 S3; m = 3, τ = 1 16.6 h 12.5 h 10 h 8.33 h 6.25 h
scenario4 S4; m = 3, τ = 1 12.5 h 10 h 8.33 h 7.14 h 5 h
scenario5 S4s1* 12.5 h 10 h 8.33 h 7.14 h 5 h
scenario6 S4s2* 12.5 h 10 h 7.14 h 5.5 h 4.5 h

Set2
scenario7 S6s3** 12.5 h 10 h 7.14 h 5.5 h 4.5 h
scenario8 S5; m = 3, τ = 1 10 h 8.33 h 7.14 h 6.25 h 4.5 h

Table 1: Example of scenarios simulations. * FFT1 was modeled with m =
2, τ = 1 and FFT2 to FFT5 with m = 3, τ = 1. ** FFT2 was modeled with
m = 3, τ = 1 and others were modeled with m = 2, τ = 1. For Set 1: learning
set=27600; test set=2399; and for Set 2: learning set=15000; test set=2880.

4 Forecasting

The aim of the nonlinear time series considered in our study is to employ the
models for forecasting future values of the HCHO variability. Furthermore, out-
of sample forecasting was considered as the way to evaluate the capability of
regime switching model to capture some of the non-linearity within the data. The
forecasting domain has been influenced, for a long time by linear models such
as ARMA for which the forecasting function is not very difficult. For example,
for AR(2) model, the one step-ahead forecast at time t is x̃t+1 = φ1xt + φ2xt−1

and it not difficult to show that in general it holds that:

x̃t+h|t = E [xt+h | Ωt] ≈ φ1x̃t+h−1|t + φ2x̃t+h|t (8)
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Fig. 3: Multi-FFT reconstruction of original HCHO time series (scenario 6).
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However, considering our case, the time series exhibits nonlinear patterns:
asymmetric distribution, abrupt changes, breaks ...etc. Thus forecasting from
nonlinear models is a more involved task than forecasting from linear models.
That is, the optimal h-step-ahead forecast of xt+h at time t for a general non-
linear model

xt = f (xt−1; θ) + εt, (9)

is given by:

x̃t+h|t = E [xt+h | Ωt] = E
[

f
(

xt+(h−1); θ
)

| Ωt

]

. (10)

The main difference between the forecast in (10) and the general recursive
forecast for an ARIMA (for example) is that the linear expectation operator E
cannot be interchanged with f : the expected value of nonlinear function is not
equal to the function evaluated at the value of its arguments [13]. Overall, the
relationship between forecasts at different horizons for the nonlinear model does
not exist as shown for linear one in the (8). Forecasting 2-step ahead for an
nonlinear model is given by

x̃t+2|t = E [f (f (xt; θ) + εt+1; θ) | Ωt]
= E

[

f
(

x̃t+1|t + εt+1; θ
)

| Ωt

] . (11)

Unlike the naive approach which considers that εt+1 = 0 in (11) or the
possibility of interchanging between E and f , Monte Carlo simulation and boot-
strapping methods are used to compute nonlinear forecasts and to approximate
the conditional expectation (11).

The 2-step-ahead Monte Carlo forecast is given by

x̃
(mc)
t+2|t =

1

k

k
∑

i=1

f
(

x̃t+1|t + εi; θ
)

, (12)

where k is some larger number and the εt are simulated from prior information
about the distribution of εt+1. While in the bootstrap forecast consider the
residuals from the estimated model, {ε̃t}t=1,...,n in, the forecast function is given
by:

x̃
(boot)
t+2|t =

1

k

k
∑

i=1

f
(

x̃t+1|t + ε̃i; θ
)

. (13)

5 Results and discussion

The forecasting experiment is designed as follows. We use in-sample HCHO data
to estimate the parameters of the models of interest for each simulation. Then we
make multi out-of-sample forecasts up to 60 minutes, 10 hours, 1 day, 36 hours
and 40 hours ahead and evaluate them. We carry out and evaluate forecasts in
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forecast) (here d is τ).
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terms of RMSE and MAPE, we repeat the procedures for each parameter m, τ
in the equation (13).

The forecast performance of applied FFT-LSTAR and FFT-SETAR models
were evaluated against 60 minutes, 10 hours, 1 day, 36 hours and 40 hours out
of sample values; the figures 4 and 5 shows the forecasting performances of
the different scenarios models in terms of RMSE and MAPE. For a short-term
forecasting 60-600 minutes, the scenarios 4, 5 and 6 outperform the other cases
with RMSE around 0.3 ppb and 0.85 ppb respectively. The MAPE values for
60 and 600 out of sample forecasts were below 10%. This shows that the effect
of cutoff frequencies in the FFTs have not a significant impact in short-term
forecasts. However, if we add more high frequencies in the different FFTs; we
reduce consistently the long-term accuracy of forecasting. Specifically, with the
same m and τ in scenario 5, the periods included in each FFT are as follows:
> 1hour (FFT1); > 30 minutes (FFT2); > 15 minutes FFT3; > 7.5 minutes
(FF4); > 5 minutes (FFT5). The RMSE values for one day out of sample (1440
min) in this configuration is 3,61 ppb, while it is 2.19 ppb for the scenario 5
(MAPE=28 %; 16% respectively). In general, for the model based on scenario
1, 2, 5, and 6; there is no significant difference with RMSE when the prediction
time horizon change between 24 h, 36 h and 40 h.

The models studied in scenario 7 highlights a good performance until 1-day
ahead (RMSE =1.1 ppb); and the model obtained from scenario 8 highlights
very good accuracy until 12.5 h. The box plot of RMSE illustrates the difference
between the prediction in the case of set 1 and set 2 as a function of the forecast
horizon; as the prediction time interval increases, the actual HCHO fluctuations
deviated from its assumed concentrations, which lead to poor forecasting accu-
racy. As shown in the (Fig[6]), the HCHO concentrations given by the prediction
model of scenario 8 is closely aligned with the raw data. In fact this scheme is the
best forecast we got for a 10 hours, with RMSE equal to 0.44 ppb and MAPE
equal to 6.14 %. This performance could attributed to the basic underlying char-
acteristic of the good compromise of the included period in FFTs components
and the parameters of the SETAR model.

6 Conclusion

This study deals with forecasting indoor pollutant concentrations and in particu-
lar HCHO in an open place office, the focus goes beyond the mere estimation and
take account of the forecast ability of Regime Switching Models coupled with the
fast Fourier transform components. The results of forecast suggest that there is
benefit by taking choice of “cutoff” frequency. We have shown that de-noise the
raw data permits to identify some characteristics such as beaks. Furthermore,
the non-linear models developed here capture the asymmetric behavior of the
HCHO fluctuations.

The methodology developed here appears new in order to forecast indoor air
quality, the practical implication of the kind of study is that to help decision-
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makers to carry out actions that attempt reduce indoor pollution. To do this, it
depends on the expected values of indoor pollutants concentrations.
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