, World Meteorological Organization. WMO Greenhouse Gas Bulletin. WMO Bull, vol.2017, pp.1-8

I. Haberle, Ø. Skreiberg, J. ?azar, and N. Haugen, Numerical models for thermochemical degradation of thermally thick woody biomass, and their application in domestic wood heating appliances and grate furnaces, Prog Energy Combust Sci, vol.63, pp.204-52, 2017.

, World Health Organization. Residential heating with wood and coal: health impacts and policy options in Europe and North America, p.58, 2015.

M. S. Mettler, D. G. Vlachos, and P. J. Dauenhauer, Top ten fundamental challenges of biomass pyrolysis for biofuels, Energy Environ Sci, vol.5, pp.7797-809, 2012.

W. J. Liu, W. W. Li, H. Jiang, and H. Q. Yu, Fates of Chemical Elements in Biomass during Its Pyrolysis, Chem Rev, vol.117, pp.6367-98, 2017.

E. Popova, A. Chernov, P. Maryandyshev, A. B. Kehrli, D. Trouv et al., Thermal degradation and combustion of wood fuels, coals and hydrolyzed lignin from the Russian Federation: experiments and modeling, Bioresour Technol, 2016.

Z. Zhou, H. Jin, L. Zhao, Y. Wang, W. Wen et al., A thermal decomposition study of pine wood under ambient pressure using thermogravimetry combined with synchrotron vacuum ultraviolet photoionization mass spectrometry, Proc Combust Inst, vol.36, pp.2217-2241, 2017.

S. Papari and K. Hawboldt, A review on the pyrolysis of woody biomass to bio-oil: Focus on kinetic models, Renew Sustain Energy Rev, vol.52, pp.1580-95, 2015.

V. Dhyani and T. Bhaskar, A comprehensive review on the pyrolysis of lignocellulosic biomass, Renew Energy, vol.129, pp.695-716, 2018.

T. Kan, V. Strezov, and T. J. Evans, Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters, Renew Sustain Energy Rev, vol.57, pp.126-1140, 2016.

F. X. Collard and J. Blin, A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin, Renew Sustain Energy Rev, vol.38, pp.594-608, 2014.

J. Larfeldt, B. Leckner, and M. C. Melaaen, Modelling and measurements of heat transfer in charcoal from pyrolysis of large wood particles, Biomass and Bioenergy, vol.18, pp.507-521, 2000.

A. Galgano, D. Blasi, C. Horvat, A. Sinai, and Y. , Experimental validation of a coupled solidand gas-phase model for combustion and gasification of wood logs, Energy and Fuels, vol.20, pp.2223-2255, 2006.

R. Yuen, G. H. Yeoh, D. Vahl-davis, G. Leonardi, and E. , Modelling the pyrolysis of wet wood -I. Three-dimensional formulation and analysis, Int J Heat Mass Transf, vol.50, pp.4371-86, 2007.

Y. Yang, V. N. Sharifi, J. Swithenbank, L. Ma, L. I. Darvell et al., Combustion of a Single Particle of Biomass, Energy & Fuels, vol.22, pp.306-322, 2008.

A. Galgano, D. Blasi, C. Ritondale, S. Todisco, and A. , Numerical simulation of the glowing combustion of moist wood by means of a front-based model, Fire Mater, pp.639-58, 2014.

Y. Ding, C. Wang, and S. Lu, Modeling the pyrolysis of wet wood using FireFOAM, Energy Convers Manag, vol.98, pp.500-506, 2015.

M. G. Grønli and M. C. Melaaen, Mathematical Model for Wood Pyrolysis Comparison of Experimental Measurements with Model Predictions, Energy & Fuels, vol.14, pp.791-800, 2000.

K. M. Bryden and M. J. Hagge, Modeling the combined impact of moisture and char shrinkage on the pyrolysis of a biomass particle, Fuel, vol.82, p.108, 2003.

U. Sand, J. Sandberg, and J. Larfeldt, Bel Fdhila R. Numerical prediction of the transport and pyrolysis in the interior and surrounding of dry and wet wood log, Appl Energy, vol.85, pp.1208-1232, 2008.

A. K. Sadhukhan, P. Gupta, and R. K. Saha, Modelling and experimental studies on pyrolysis of biomass particles, J Anal Appl Pyrolysis, vol.81, pp.183-92, 2008.

K. Kwiatkowski, K. Bajer, A. Celi?ska, M. Dudy?ski, J. Korotko et al., Pyrolysis and gasification of a thermally thick wood particle -Effect of fragmentation, Fuel, vol.132, pp.125-159, 2014.

C. Branca, D. Blasi, and C. , Global interinsic kinetics of wood oxidation, Fuel, vol.83, pp.81-88, 2004.

J. F. González, J. M. Encinar, J. L. Canito, E. Sabio, and M. Chacón, Pyrolysis of cherry stones: Energy uses of the different fractions and kinetic study, J Anal Appl Pyrolysis, vol.67, pp.165-90, 2003.

R. Radmanesh, Y. Courbariaux, J. Chaouki, and C. Guy, A unified lumped approach in kinetic modeling of biomass pyrolysis, Fuel, vol.85, pp.1211-1231, 2006.

A. G. Barneto, J. A. Carmona, J. Alfonso, and R. S. Serrano, Simulation of the thermogravimetry analysis of three non-wood pulps, Bioresour Technol, vol.101, pp.3220-3229, 2010.

F. Shafizadeh, A. Bradbury, and . Gw, Thermal degradation of cellulose in air and nitrogen at low temperatures, J Appl Polym Sci, vol.23, pp.1431-1473, 1979.

E. Ranzi, A. Cuoci, T. Faravelli, A. Frassoldati, G. Migliavacca et al., Chemical kinetics of biomass pyrolysis, Energy and Fuels, vol.22, pp.4292-300, 2008.

P. Debiagi, C. Pecchi, G. Gentile, A. Frassoldati, A. Cuoci et al., Extractives Extend the Applicability of Multistep Kinetic Scheme of Biomass Pyrolysis, Energy and Fuels, vol.29, pp.6544-55, 2015.

K. Dussan, S. Dooley, and R. Monaghan, Integrating compositional features in model compounds for a kinetic mechanism of hemicellulose pyrolysis, Chem Eng J, vol.328, pp.943-61, 2017.

K. Dussan, S. Dooley, and R. Monaghan, A model of the chemical composition and pyrolysis kinetics of lignin, Proc Combust Inst, vol.000, pp.1-8, 2018.

L. J. Broadbelt and J. Pfaendtner, Lexicography of kinetic modeling of complex reaction networks, AIChE J, vol.51, pp.2112-2133, 2005.

R. Vinu and L. J. Broadbelt, A mechanistic model of fast pyrolysis of glucose-based carbohydrates to predict bio-oil composition, Energy Environ Sci, vol.5, pp.9808-9834, 2012.

X. Zhou, M. W. Nolte, H. B. Mayes, B. H. Shanks, and L. J. Broadbelt, Experimental and Mechanistic Modeling of Fast Pyrolysis of Neat Glucose-Based Carbohydrates. 1. Experiments and Development of a Detailed Mechanistic Model, Ind Eng Chem Res, vol.53, pp.13274-89, 2014.

X. Zhou, W. Li, R. Mabon, and L. J. Broadbelt, A mechanistic model of fast pyrolysis of hemicellulose, Energy Environ Sci, vol.11, pp.1240-60, 2018.

S. R. Horton, R. J. Mohr, Y. Zhang, F. P. Petrocelli, and M. T. Klein, Molecular-Level Kinetic Modeling of Biomass Gasification, Energy & Fuels, vol.30, pp.1647-61, 2016.

M. V. Gil, D. Casal, C. Pevida, J. J. Pis, and F. Rubiera, Thermal behaviour and kinetics of coal/biomass blends during co-combustion, Bioresour Technol, vol.101, pp.5601-5609, 2010.

D. K. Shen, S. Gu, K. H. Luo, A. V. Bridgwater, and M. X. Fang, Kinetic study on thermal decomposition of woods in oxidative environment, Fuel, vol.88, 2009.

A. Pérez, M. A. Martín-lara, A. Gálvez-pérez, M. Calero, and R. A. , Kinetic analysis of pyrolysis and combustion of the olive tree pruning by chemical fractionation, Bioresour Technol, vol.249, pp.557-66, 2018.

G. Wang, J. Zhang, J. Shao, and S. Ren, Characterisation and model fitting kinetic analysis of coal/biomass co-combustion, Thermochim Acta, vol.591, pp.68-74, 2014.

G. Navarrete-cereijo, P. Curto-risso, and W. A. Bizzo, Simplified model and simulation of biomass particle suspension combustion in one-dimensional flow applied to bagasse boilers, Biomass and Bioenergy, vol.99, pp.38-48, 2017.

H. Mätzing, H. J. Gehrmann, H. Seifert, and D. Stapf, Modelling grate combustion of biomass and low rank fuels with CFD application, Waste Manag, vol.78, pp.686-97, 2018.

E. Ranzi, M. Corbetta, F. Manenti, and S. Pierucci, Kinetic modeling of the thermal degradation and combustion of biomass, Chem Eng Sci, vol.110, pp.2-12, 2014.

M. Corbetta, A. Frassoldati, H. Bennadji, K. Smith, M. J. Serapiglia et al., Pyrolysis of Centimeter-Scale Woody Biomass Particles: Kinetic Modeling and Experimental Validation, Energy & Fuels, vol.28, pp.1-6, 2014.

P. Debiagi, G. Gentile, M. Pelucchi, A. Frassoldati, A. Cuoci et al., Detailed kinetic mechanism of gas-phase reactions of volatiles released from biomass pyrolysis, Biomass and Bioenergy, vol.93, pp.60-71, 2016.

E. Ranzi, P. Debiagi, and A. Frassoldati, Mathematical Modeling of Fast Biomass Pyrolysis and Bio-Oil Formation. Note I: Kinetic Mechanism of Biomass Pyrolysis, ACS Sustain Chem Eng, vol.5, pp.2867-81, 2017.

S. V. Vassilev, D. Baxter, L. K. Andersen, and C. G. Vassileva, An overview of the chemical composition of biomass, Fuel, vol.89, pp.913-946, 2010.

J. Dorado, T. A. Van-beek, F. W. Claassen, and R. Sierra-alvarez, Degradation of lipophilic wood extractive constituents in Pinus sylvestris by the white-rot fungi Bjerkandera sp. and Trametes versicolor, Wood Sci Technol, vol.35, pp.117-142, 2001.

A. Sharma, V. Pareek, and D. Zhang, Biomass pyrolysis -A review of modelling, process parameters and catalytic studies, Renew Sustain Energy Rev, vol.50, pp.1081-96, 2015.

E. Ranzi, S. Pierucci, P. C. Aliprandi, and S. Stringa, Comprehensive and detailed kinetic model of a traveling grate combustor of biomass, Energy and Fuels, vol.25, pp.4195-205, 2011.

G. Schmidt, G. Trouvé, G. Leyssens, C. Schönnenbeck, P. Genevray et al., Wood washing: Influence on gaseous and particulate emissions during wood combustion in a domestic pellet stove, Fuel Process Technol, vol.174, pp.104-121, 2018.

T. Faravelli, A. Frassoldati, G. Migliavacca, and E. Ranzi, Detailed kinetic modeling of the thermal degradation of lignins, Biomass and Bioenergy, vol.34, pp.290-301, 2010.

, ANSYS Reaction Design, ANSYS CHEMKIN 17.0 (15151), 2016.

P. T. Williams and S. Besler, The influence of temperature and heating rate on the slow pyrolysis of biomass, vol.1481, pp.6-7, 1996.

E. Jakab, O. Faix, F. Till, and T. Szekely, Thermogravimetry / mass spectrometry within the scope of an international study of six lignins round robin test, Anal Appl Pyrolysis, vol.35, 1995.

D. Shen, J. Hu, R. Xiao, H. Zhang, S. Li et al., Online evolved gas analysis by Thermogravimetric-Mass Spectroscopy for thermal decomposition of biomass and its components under different atmospheres : Part I . Lignin, Bioresour Technol, vol.130, pp.449-56, 2013.

D. Shen, J. Ye, R. Xiao, and H. Zhang, TG-MS analysis for thermal decomposition of cellulose under different atmospheres, Carbohydr Polym, vol.98, pp.514-535, 2013.

K. Werner, L. Pommer, and M. Broström, Thermal decomposition of hemicelluloses, J Anal Appl Pyrolysis, vol.110, pp.130-137, 2014.

D. Shen, L. Zhang, J. Xue, S. Guan, Q. Liu et al., Thermal degradation of xylan-based hemicellulose under oxidative atmosphere, Carbohydr Polym, vol.127, pp.363-71, 2015.

L. Brech, Y. Jia, L. Cissé, S. Mauviel, G. Brosse et al., Mechanisms of biomass pyrolysis studied by combining a fixed bed reactor with advanced gas analysis, J Anal Appl Pyrolysis, vol.117, pp.334-380, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01923764

L. Brech, Y. Raya, J. Delmotte, L. Brosse, N. Gadiou et al., Characterization of biomass char formation investigated by advanced solid state NMR, Carbon N Y, vol.108, pp.165-77, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01599591

D. Chen, Y. Li, K. Cen, M. Luo, H. Li et al., Pyrolysis polygeneration of poplar wood : Effect of heating rate and pyrolysis temperature, Bioresour Technol, vol.218, pp.780-788, 2016.

B. Husson, M. Ferrari, O. Herbinet, S. S. Ahmed, P. A. Glaude et al., New experimental evidence and modeling study of the ethylbenzene oxidation, Proc
URL : https://hal.archives-ouvertes.fr/hal-00772058

, Combust. Inst, vol.34, pp.325-358, 2013.

Y. Song, L. Marrodán, N. Vin, O. Herbinet, E. Assaf et al., The sensitizing effects of NO2 and NO on methane low temperature oxidation in a jet stirred reactor
URL : https://hal.archives-ouvertes.fr/hal-01922893

, Proc Combust Inst, vol.000, pp.1-9, 2018.

F. Battin-leclerc, A. A. Konnov, J. L. Jaffrezo, and M. Legrand, To better understand the formation of short-chain acids in combustion systems, Combust Sci Technol, vol.180, pp.343-70, 2008.
URL : https://hal.archives-ouvertes.fr/insu-00377936

L. S. Tran, Z. Wang, H. H. Carstensen, C. Hemken, F. Battin-leclerc et al., Comparative experimental and modeling study of the low-to moderate-temperature oxidation chemistry of 2 , 5-dimethylfuran , 2-methylfuran , and furan, Combust Flame, vol.181, pp.251-69, 2017.

M. Nowakowska, Conversion thermique des goudrons provenant de la gazéification de la biomasse, 2014.

M. Nowakowska, O. Herbinet, A. Dufour, and P. A. Glaude, Detailed kinetic study of anisole pyrolysis and oxidation to understand tar formation during biomass combustion and gasification, Combust Flame, vol.161, pp.1474-88, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00991550

M. Nowakowska, O. Herbinet, A. Dufour, and P. A. Glaude, Kinetic Study of the Pyrolysis and Oxidation of Guaiacol, J Phys Chem A, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01921769

C. Muller, V. Michel, G. Scacchi, and G. M. Côme, THERGAS: a computer program for the evaluation of thermochemical data of molecules and free radicals in the gas phase, J Chim Phys, vol.5, pp.1154-78, 1995.

D. L. Baulch, M. J. Pilling, C. J. Cobos, R. A. Cox, P. Frank et al., Evaluated Kinetic Data for Combustion Modeling. Supplement I, J Phys Chem Ref Data, vol.23, pp.847-855, 1994.

K. Yasunaga, S. Kubo, H. Hoshikawa, T. Kamesawa, and Y. Hidaka, Shock-Tube and Modeling Study of Acetaldehyde Pyrolysis and Oxidation, Int J Chem Kinet, vol.40, pp.73-102, 2008.

D. L. Allara and R. Shaw, A compilation of kinetic parameters for the thermal degradation of n-alkane molecules, J Phys Chem Ref Data, vol.9, pp.523-59, 1980.

V. Bloch-michel, KINGAS: software for the estimation of kinetic data based on Benson's method, 1995.

L. S. Tran, P. A. Glaude, and F. Battin-leclerc, An experimental study of the structure of laminar premixed flames of ethanol/methane/oxygen/argon, Combust Explos Shock Waves, vol.49, pp.11-19, 2013.

E. J. Shin, M. R. Nimlos, and R. J. Evans, Kinetic analysis of the gas-phase pyrolysis of carbohydrates, Fuel, vol.80, pp.1697-709, 2001.

A. Fukutome, H. Kawamoto, and S. Saka, Processes forming Gas, Tar, and Coke in Cellulose Gasification from Gas-Phase Reactions of Levoglucosan as Intermediate, ChemSusChem, vol.8, pp.2240-2249, 2015.

N. Thimthong, S. Appari, R. Tanaka, K. Iwanaga, S. Kudo et al., Kinetic modeling of non-catalytic partial oxidation of nascent volatiles derived from fast pyrolysis of woody biomass with detailed chemistry, Fuel Process Technol, vol.134, pp.159-67, 2015.

E. Hoekstra, R. Westerhof, W. Brilman, W. Swaaij, S. Kersten et al., Heterogeneous and Homogeneous Reactions of Pyrolysis Vapors from Pine Wood, Wiley Online Libr, vol.58, 2012.

K. Norinaga, T. Shoji, S. Kudo, and J. Hayashi, Detailed chemical kinetic modelling of vapourphase cracking of multi-component molecular mixtures derived from the fast pyrolysis of cellulose, Fuel, vol.103, pp.141-50, 2013.

Z. Cheng, Y. Tan, L. Wei, L. Xing, J. Yang et al., Experimental and kinetic modeling studies of furan pyrolysis : Fuel decomposition and aromatic ring formation, Fuel, vol.206, pp.239-286, 2017.

R. Zhang, S. Zhao, and Y. Luo, Experimental and Modeling Investigation on the Effect of Intrinsic and Extrinsic Oxygen on Biomass Tar Decomposition, Energy & Fuels, vol.31, pp.8665-73, 2017.

M. Asmadi, H. Kawamoto, and S. Saka, Thermal reactions of guaiacol and syringol as lignin model aromatic nuclei, J Anal Appl Pyrolysis, vol.92, pp.88-98, 2011.

M. U. Alzueta, P. Glarborg, and K. Dam-johansen, Experimental and Kinetic Modeling Study of the Oxidation of Benzene, Int J Chem Kinet, vol.32, pp.498-522, 2000.

B. Wang, Y. Liu, J. Weng, and P. Glarborg, New insights in the low-temperature oxidation of acetylene, Proc Combust Inst, vol.36, pp.355-63, 2017.

W. Yuan, Y. Li, G. Pengloan, C. Togbé, P. Dagaut et al., A comprehensive experimental and kinetic modeling study of ethylbenzene combustion, vol.166, pp.255-65, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02014664

C. Saggese, A. Frassoldati, A. Cuoci, T. Faravelli, and E. Ranzi, A wide range kinetic modeling study of pyrolysis and oxidation of benzene, Combust Flame, vol.160, pp.1168-90, 2013.