D. P. Bentz, Fibers, Percolation, and Spalling of High-Performance Concrete, ACI Materials Journal, vol.97, pp.351-359, 2000.

G. Debicki, R. Haniche, and F. Delhomme, An experimental method to investigate concrete spalling in temperature, Proceedings of the 2 nd International Workshop on Concrete Spalling due to Fire Exposure, pp.189-195, 2011.

P. Kalifa, G. Chéné, and C. Gallé, High-temperature behaviour of HPC with polypropylene fibres: From spalling to microstructure, vol.31, pp.1487-1499, 2001.

S. Bei and L. Zhixiang, Investigation on spalling resistance of ultra-high strength concrete under rapid heating and rapid cooling, Case Studies in Construction Materials, 4, pp.146-153, 2016.

A. Bilodeau, V. K. Kodur, and G. C. Hoff, Optimization of the type and amount of polypropylene fibres for preventing the spalling of lightweight concrete subjected to hydrocarbon fire, vol.26, pp.163-174, 2004.

B. Persson, Fire resistance of self-compacting concrete-SCC, Materials and Structures, vol.37, pp.575-584, 2005.

T. Arai, K. Furuichi, and B. Persson, Experimental study on reinforced concrete segement using fireproof concrete for shield tunnel in highway or railway, Proceedings of the 2 nd International Workshop on Concrete Spalling due to Fire Exposure, pp.5-7, 2011.

R. B. Mugume and T. Horiguchi, Effect of fiber type and geometry on maximum pore pressures in fibre-reinforced high strength concrete at elevated temperatures, vol.42, pp.459-466, 2012.

Y. Heo, J. G. Sanjayan, C. Han, and H. , Effect of fiber type, length and numbers of fibers per unit volume on spalling protection of high-strength concrete, Proceedings of the 4 th International Workshop on Concrete Spalling due to Fire Exposure, pp.211-220, 2015.

K. K. Sideris and P. Manita, Influence of length and dosage of polypropylene fibres on the spalling tendency and the residual properties of self-compacting concrete after heated at elevated temperatures, Proceedings of the 3 rd International Workshop on Concrete Spalling due to Fire Exposure, pp.25-27, 2004.

I. Hager and T. Tracz, The impact of the amount and length of fibrillated polypropylene fibres on the properties of HPC exposed to high temperature, Archives of Civil Engineering, vol.56, pp.57-68, 2010.

Y. Heo, J. G. Sanjayan, and H. , Relationship between interaggregate spacing and the optimum fiber length for spalling protection of concrete in fire, vol.42, pp.549-557, 2012.

M. J. Miah, H. Carré, P. Pimienta, N. Pinoteau, L. Borderie et al., Effect of uniaxial mechanical loading on fire spalling of concrete, Proceedings of the 4 th International Workshop on Concrete Spalling due to Fire Exposure, pp.124-131, 2015.

Z. Pan, J. G. Sanjayan, and D. L. Kong, Effect of aggregate size on spalling of geopolymer and Portland cement concretes subjected to elevated temperatures, Construction and Building Materials, vol.36, pp.365-372, 2012.

A. Nince and A. D. Figueiredo, The influence of aggregate size in the risk of spalling in normal and high-strength concrete subjected to hydrocarbon fire, Proceedings of the 5 th International Conference on Concrete for Structures, pp.7-8, 2005.

J. ;. Robert, L. Lth, and . University, Material properties related to fire spalling of concrete, Division of Building Materials, 2008.

J. Mindeguia, Contribution expérimentale à la comprehension des risques d'instabilité thermique des bétons, 2009.

J. Mindeguia, H. Carré, P. Pimienta, L. Borderie, and C. , Experimental discussion on the mechanisms behind the fire spalling of concrete, Fire and Materials, vol.39, pp.619-635, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01102429

I. G. Hager, Comportement à haute température des bétons à haute performabceévolution des principales propriétés mécaniques, 2004.

D. R. Lankard, D. L. Birkimer, F. F. Fondriest, and M. J. Snyder, Effects of moisture content on the structural properties of Portland cement concrete exposed to temperatures up to 500 F, Proceedings of the 21 st ACI Fall Meeting, pp.59-102, 1971.

U. Schneider, Verhalten von Beton bei hohen Temperaturen Deutscher Ausschuss für Stahlbeton, 1982.