M. H. Ramage, H. Burridge, M. Busse-wicher, G. Fereday, T. Reynolds et al., The wood from the trees: The use of timber in construction, Renewable and Sustainable Energy Reviews, vol.68, pp.333-359, 2017.

N. En, Reaction to fire tests for building products. Building products excluding floorings exposed to the thermal attack by a single burning item, AFNOR, ICS, vol.13, p.50

D. Bauprodukte, E. K. Deutsche, and S. D. Allemande, Fire classification of construction products and building elements, Otto-Graf-Journal, vol.16, p.151

A. I. Bartlett, R. M. Hadden, J. P. Hidalgo, S. Santamaria, F. Wiesner et al., Auto-extinction of engineered timber: Application to compartment fires with exposed timber surfaces, Fire Safety Journal, vol.91, pp.407-413, 2017.

N. L. Östman and E. Mikkola, European classes for the reaction to fire performance of wood-based panels, Fire and Materials, vol.34, issue.6, pp.315-330, 2010.

V. Babrauskas, Ignition of Wood: A Review of the State of the Art, Journal of Fire Protection Engineering, vol.12, issue.3, pp.163-189, 2002.

D. A. Tillman, A. J. Rossi, and W. D. Kitto, PROPERTIES OF WOOD FUELS, Wood Combustion, pp.17-47, 1981.

X. Zhou, Contributionà l'étude de l'incinération des déchets urbains : expérimentation en réacteurà lit fixeà contre courant, approche théorique du déplacement du front d'inflammation, 1994.

F. Mermoud, Captage de CO2 - gazéification à la centrale alimentée au charbon propre, 2009.

B. Batiot, P. Boulet, A. Cablé, K. Chetehouna, A. Coppalle et al., Mécanismes, enjeux et verrous scien-Bibliographie tifiques intervenant dans les incendies de grande ampleur

M. J. Spearpoint and J. G. Quintiere, Predicting the piloted ignition of wood in the cone calorimeter using an integral model ? effect of species, grain orientation and heat flux, Fire Safety Journal, vol.36, issue.4, pp.391-415, 2001.

A. M. Kanury and P. L. Blackshear, Some Considerations Pertaining to the Problem of Wood-Burning, Combustion Science and Technology, vol.1, issue.5, pp.339-356, 1970.

A. Roberts, The heat of reaction during the pyrolysis of wood, Combustion and Flame, vol.17, issue.1, pp.79-86, 1971.

X. Deglise and A. Donnot, Boisénergie, 2004.

J. Repola, Models for vertical wood density of Scots pine, Norway spruce and birch stems, and their application to determine average wood density, Silva Fennica, vol.40, issue.4, 2006.

A. Roberts, Problems associated with the theoretical analysis of the burning of wood, Symposium (International) on Combustion, vol.13, issue.1, pp.893-903, 1971.

B. M. Suleiman, J. Larfeldt, B. Leckner, and M. Gustavsson, Thermal conductivity and diffusivity of wood, Wood Science and Technology, vol.33, issue.6, pp.465-473, 1999.

M. Gupta, J. Yang, and C. Roy, Specific heat and thermal conductivity of softwood bark and softwood char particles?, Fuel, vol.82, issue.8, pp.919-927, 2003.

J. Froidevaux and P. Navi, Aging law of spruce wood, Wood Material Science and Engineering, vol.8, issue.1, pp.46-52, 2013.

K. Kránitz, W. Sonderegger, C. Bues, and P. Niemz, Effects of aging on wood: a literature review, Wood Science and Technology, vol.50, issue.1, pp.7-22, 2015.

B. Günther, K. Gebauer, R. Barkowski, M. Rosenthal, and C. Bues, Calorific value of selected wood species and wood products, European Journal of Wood and Wood Products, vol.70, issue.5, pp.755-757, 2012.

T. Hosoya, H. Kawamoto, and S. Saka, Pyrolysis behaviors of wood and its constituent polymers at gasification temperature, Journal of Analytical and Applied Pyrolysis, vol.78, issue.2, pp.328-336, 2007.

A. H. Buchanan and A. K. Abu, Structural Design for Fire Safety, 2016.

K. L. Friquin, Material properties and external factors influencing the charring rate of solid wood and glue-laminated timber, Fire and Materials, vol.35, issue.5, pp.303-327, 2010.

I. S. Wichman and A. Atreya, A simplified model for the pyrolysis of charring materials, Combustion and Flame, vol.68, issue.3, pp.231-247, 1987.

D. Drysdale, An Introduction to Fire Dynamics, 2011.

R. H. White and M. A. Dietenberger, Wood Products: Thermal Degradation and Fire, Encyclopedia of Materials: Science and Technology, pp.9712-9716, 2001.

L. Yang, X. Chen, X. Zhou, and W. Fan, The pyrolysis and ignition of charring materials under an external heat flux, Combustion and Flame, vol.133, issue.4, pp.407-413, 2003.

F. L. Browne, Theories of the combustion of wood and its control, 1958.

D. K. Shen, M. X. Fang, Z. Y. Luo, and K. F. Cen, Modeling pyrolysis of wet wood under external heat flux, Fire Safety Journal, vol.42, issue.3, pp.210-217, 2007.

D. K. Shen and S. Gu, The mechanism for thermal decomposition of cellulose and its main products, Bioresource Technology, vol.100, issue.24, pp.6496-6504, 2009.

T. J. Ohlemiller, T. Kashiwagi, and K. Werner, Wood gasification at fire level heat fluxes, Combustion and Flame, vol.69, issue.2, pp.155-170, 1987.

A. Bartlett, R. Hadden, L. Bisby, and A. Law, Analysis of cross-laminated timber charring rates upon exposure to non-standard heating conditions, Fire and Materials, 2015.

H. E. Thomson, D. D. Drysdale, and C. L. Beyler, An experimental evaluation of critical surface temperature as a criterion for piloted ignition of solid fuels, Fire Safety Journal, vol.13, issue.2-3, pp.185-196, 1988.

K. Tsai, Orientation effect on cone calorimeter test results to assess fire hazard of materials, Journal of Hazardous Materials, vol.172, issue.2-3, pp.763-772, 2009.

G. T. Linteris, L. Gewuerz, K. B. Mcgrattan, and G. P. Forney, Modeling Solid Sample Buming, Fire Safety Science, vol.8, pp.625-636, 2005.

V. Babrauskas and W. J. Parker, Ignitability measurements with the cone calorimeter, Fire and Materials, vol.11, issue.1, pp.31-43, 1987.

D. Shen, R. Xiao, M. Fang, and W. Chow, Thermal-balanced integral model for pyrolysis and ignition of wood, Korean Journal of Chemical Engineering, vol.30, issue.1, pp.228-234, 2013.

A. I. Bartlett, R. M. Hadden, and L. A. Bisby, A Review of Factors Affecting the Burning Behaviour of Wood for Application to Tall Timber Construction, Fire Technology, vol.55, issue.1, pp.1-49, 2018.

S. Roblin, Etude numérique de l'auto-inflammation des solides par simulation numérique directe : application au polyméthacrylate de méthyle, 2016.

N. Boonmee and J. G. Quintiere, Glowing ignition of wood: the onset of surface combustion, Proceedings of the Combustion Institute, vol.30, issue.2, pp.2303-2310, 2005.

L. Shi and M. Y. Chew, Experimental study of woods under external heat flux by autoignition, Journal of Thermal Analysis and Calorimetry, vol.111, issue.2, pp.1399-1407, 2012.

Y. Lizhong, Z. Yupeng, W. Yafei, and G. Zaifu, Predicting charring rate of woods exposed to time-increasing and constant heat fluxes, Journal of Analytical and Applied Pyrolysis, vol.81, issue.1, pp.1-6, 2008.

M. J. Didomizio, P. Mulherin, and E. J. Weckman, Ignition of wood under time-varying radiant exposures, Fire Safety Journal, vol.82, pp.131-144, 2016.

I. Vermesi, M. J. Didomizio, F. Richter, E. J. Weckman, and G. Rein, Pyrolysis and spontaneous ignition of wood under transient irradiation: Experiments and a-priori predictions, Fire Safety Journal, vol.91, pp.218-225, 2017.

C. Zhai, J. Gong, X. Zhou, F. Peng, and L. Yang, Pyrolysis and spontaneous ignition of wood under time-dependent heat flux, Journal of Analytical and Applied Pyrolysis, vol.125, pp.100-108, 2017.

J. Torero, Flaming Ignition of Solid Fuels, SFPE Handbook of Fire Protection Engineering, pp.633-661, 2016.

P. Cremona, Caractérisation expérimentale et numérique des scenarii de feu impliquant un conduit de fumée d'appareils de combustion bois, 2017.

T. Kashiwagi, T. J. Ohlemiller, and K. Werner, Effects of external radiant flux and ambient oxygen concentration on nonflaming gasification rates and evolved products of white pine, Combustion and Flame, vol.69, issue.3, pp.331-345, 1987.

, Reaction-to-fire tests. Heat release, smoke production and mass loss rate, pp.5660-5661

H. Hottel and G. Wilkes, Wood flammability under various conditions of irradiation, 1942.

T. J. Shields, G. W. Silcock, and J. J. Murray, The effects of geometry and ignition mode on ignition times obtained using a cone calorimeter and ISO ignitability apparatus, Fire and Materials, vol.17, issue.1, pp.25-32, 1993.

N. Boonmee and J. G. Quintiere, Glowing and flaming autoignition of wood, Proceedings of the Combustion Institute, vol.29, issue.1, pp.289-296, 2002.

J. G. Quintiere, Fundamentals of Fire Phenomena, 2006.

J. G. Quintiere, Book Review : Principles of Fire Behavior, Journal of Fire Protection Engineering, vol.9, issue.1, pp.58-60, 1998.

R. Bilbao, J. F. Mastral, J. A. Lana, J. Ceamanos, M. E. Aldea et al., A model for the prediction of the thermal degradation and ignition of wood under constant and variable heat flux, Journal of Analytical and Applied Pyrolysis, vol.62, issue.1, pp.63-82, 2002.

M. Delichatsios, B. Paroz, and A. Bhargava, Flammability properties for charring materials, Fire Safety Journal, vol.38, issue.3, pp.219-228, 2003.

P. Reszka and J. L. Torero, In-depth temperature measurements in wood exposed to intense radiant energy, Experimental Thermal and Fluid Science, vol.32, issue.7, pp.1405-1411, 2008.

M. J. Spearpoint and J. G. Quintiere, Predicting the burning of wood using an integral model, Combustion and Flame, vol.123, issue.3, pp.308-325, 2000.

J. G. Quintiere, A semi-quantitative model for the burning rate of solid materials, Fire Safety Science, vol.1, pp.3-25, 1992.

A. Atreya and M. Abu-zaid, Effect Of Environmental Variables On Piloted Lgnition, Fire Safety Science, vol.3, pp.177-186, 1991.

T. Harada, Time to ignition, heat release rate and fire endurance time of wood in cone calorimeter test, Fire and Materials, vol.25, issue.4, pp.161-167, 2001.

J. Mehaffey, Fire dynamics i : ignition and burning of solids, lecture notes, 2002.

H. C. Tran and R. H. White, Burning rate of solid wood measured in a heat release rate calorimeter, Fire and Materials, vol.16, issue.4, pp.197-206, 1992.

R. Fahrni, J. Schmid, M. Klippel, and A. Frangi, Correct temperature measurements in fire exposed wood, World Conference on Timber Engineering (WCTE 2018), pp. MAT-O9, 2018.

J. Fangrat, Y. Hasemi, M. Yoshida, and T. Hirata, Surface temperature at ignition of wooden based slabs, Fire Safety Journal, vol.27, issue.3, pp.249-259, 1996.

J. Urbas and W. J. Parker, Surface temperature measurements on burning wood specimens in the Cone Calorimeter and the effect of grain orientation, Fire and Materials, vol.17, issue.5, pp.205-208, 1993.

P. Boulet, D. Brissinger, A. Collin, Z. Acem, and G. Parent, On the Influence of the Sample Absorptivity when Studying the Thermal Degradation of Materials, Materials, vol.8, issue.8, pp.5398-5413, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01416494

M. Försth and A. Roos, Absorptivity and its dependence on heat source temperature and degree of thermal breakdown, Fire and Materials, vol.35, issue.5, pp.285-301, 2010.

B. Monod, A. Collin, G. Parent, and P. Boulet, Infrared radiative properties of vegetation involved in forest fires, Fire Safety Journal, vol.44, issue.1, pp.88-95, 2009.

M. Chaos, Spectral Aspects of Bench-Scale Flammability Testing: Application to Hardwood Pyrolysis, Fire Safety Science, vol.11, pp.165-178, 2014.

T. Fateh, 4. Recherche de forme et étude mécanique de structures porteuses à flexion active, Structures innovantes en bois, 2017.

G. Gerandi, V. Tihay-felicelli, P. Santoni, V. Leroy-cancellieri, and D. Cancellieri, Multi-scale modelling of wood degradation using thermally thin wood plates, Journal of Physics: Conference Series, vol.1107, p.052001, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02106004

V. Papadogianni, A. Romeos, A. Giannadakis, K. Perrakis, and T. Panidis, Cone Calorimeter and Thermogravimetric Analysis of Glass Phenolic Composites Used in Aircraft Applications, Fire Technology, vol.56, issue.3, pp.1253-1285, 2019.

H. Yang, R. Yan, H. Chen, D. H. Lee, and C. Zheng, Characteristics of hemicellulose, cellulose and lignin pyrolysis, Fuel, vol.86, issue.12-13, pp.1781-1788, 2007.

K. Li, D. S. Pau, J. Wang, and J. Ji, Modelling pyrolysis of charring materials: determining flame heat flux using bench-scale experiments of medium density fibreboard (MDF), Chemical Engineering Science, vol.123, pp.39-48, 2015.

B. Chorlton and J. Gales, Fire performance of cultural heritage and contemporary timbers, Engineering Structures, vol.201, p.109739, 2019.

P. C. Collier, Wood decay rates and macroinvertebrate community structure along contrasting human pressure gradients (Waikato, New Zealand), New Zealand Journal of Marine and Freshwater Research, vol.48, issue.1, pp.97-111, 2013.

T. Lie, Structural Fire Protection, 1992.

Q. Xu, L. Chen, K. A. Harries, F. Zhang, Q. Liu et al., Combustion and charring properties of five common constructional wood species from cone calorimeter tests, Construction and Building Materials, vol.96, pp.416-427, 2015.

R. H. White and M. A. Dietenberger, Wood handbook : wood as an engineering material, General technical report FPL, vol.113, 1999.

R. Maciulaitis, D. Lipinskas, and K. Lukosius, Singularity and importance of determination of wood charring rate in fire investigation, Materials Science, vol.12, issue.1, pp.42-47, 2006.

J. M. Njankouo, J. Dotreppe, and J. Franssen, Experimental study of the charring rate of tropical hardwoods, Fire and Materials, vol.28, issue.1, pp.15-24, 2004.

C. Butler, Notes on charring rates in wood, Fire Safety Science, vol.896, pp.1-1, 1971.

E. Mikkola, Charring Of Wood Based Materials, Fire Safety Science, vol.3, pp.547-556, 1991.

E. L. Schaffer, Charring rate of selected woods-transverse to grain, tech. rep, 1967.

Y. Lizhong, G. Zaifu, Z. Yupeng, and F. Weicheng, The influence of different external heating ways on pyrolysis and spontaneous ignition of some woods, Journal of Analytical and Applied Pyrolysis, vol.78, issue.1, pp.40-45, 2007.

A. Frangi and M. Fontana, Charring rates and temperature profiles of wood sections, Fire and Materials, vol.27, issue.2, pp.91-102, 2003.

R. H. White and H. C. Tran, Wood and fire safety, 3rd International scientific conference, 6?9 May 1996, the high Tatras, hotel Patria, Slovak Republic, Fire Safety Journal, vol.23, issue.3, pp.329-330, 1994.

J. Urbas, W. J. Parker, and G. E. Luebbers, Surface temperature measurements on burning materials using an infrared pyrometer: accounting for emissivity and reflection of external radiation, Fire and Materials, vol.28, issue.1, pp.33-53, 2004.

G. Parent, G. Erez, A. Collin, M. Suzanne, A. Thiry-muller et al., Spectral radiation emitted by kerosene pool fires, Fire Safety Journal, vol.108, p.102847, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02410588

G. Parent, Z. Acem, S. Lechêne, and P. Boulet, Measurement of infrared radiation emitted by the flame of a vegetation fire, International Journal of Thermal Sciences, vol.49, issue.3, pp.555-562, 2010.

Z. Acem, D. Brissinger, A. Collin, G. Parent, P. Boulet et al., Surface temperature of carbon composite samples during thermal degradation, International Journal of Thermal Sciences, vol.112, pp.427-438, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01578405

C. Bedon and M. Fragiacomo, Fire Resistance of Thermally Insulated Log-House Timber Walls, Fire Technology, vol.55, issue.1, pp.307-341, 2018.

R. Fahrni, M. Klippel, A. Just, A. Ollino, and A. Frangi, Fire tests on glued-laminated timber beams with specific local material properties, Fire Safety Journal, vol.107, pp.161-169, 2019.

I. Iso, Fire-resistance tests ? Elements of building construction, International Organization for Standardization

J. V. Beck, Thermocouple Temperature Disturbances in Low Conductivity Materials, Journal of Heat Transfer, vol.84, issue.2, pp.124-131, 1962.

W. D. Brewer, Effect of thermocouple wire size and configuration on internal temperature measurements in a charring ablator, 1967.

E. Hugi, M. Wuersch, W. Risi, and K. G. Wakili, Correlation between charring rate and oxygen permeability for 12 different wood species, Journal of Wood Science, vol.53, issue.1, pp.71-75, 2007.

E. C. Peck, Wood-based panels. Determination of moisture content

B. Moghtaderi, V. Novozhilov, D. F. Fletcher, and J. H. Kent, A new correlation for bench-scale piloted ignition data of wood, Fire Safety Journal, vol.29, issue.1, pp.41-59, 1997.

M. Janssens, Piloted ignition of wood: A review, Fire and Materials, vol.15, issue.4, pp.151-167, 1991.

M. L. Janssens and R. H. White, Short communication: Temperature profiles in wood members exposed to fire, Fire and Materials, vol.18, issue.4, pp.263-265, 1994.

C. D. Blasi, E. G. Hernandez, and A. Santoro, Radiative pyrolysis of single moist wood particles, Industrial & engineering chemistry research, vol.39, issue.4, pp.873-882, 2000.

R. Bilbao, J. F. Mastral, M. E. Aldea, J. Ceamanos, M. Betrán et al., Experimental and theoretical study of the ignition and smoldering of wood including convective effects, Combustion and Flame, vol.126, issue.1-2, pp.1363-1372, 2001.

M. Cedering, Effect on the charring rate of wood in fire due to oxygen content, moisture content and wood density, 4th International Workshop on Structures in Fire, 2006.

T. Ohlemiller, Smoldering Combustion Propagation On Solid Wood, Fire Safety Science, vol.3, pp.565-574, 1991.

M. A. Delichatsios, Piloted ignition times, critical heat fluxes and mass loss rates at reduced oxygen atmospheres, Fire Safety Journal, vol.40, issue.3, pp.197-212, 2005.

J. B. Zicherman and R. B. Williamson, Microstructure of wood char, Wood Science and Technology, vol.15, issue.4, pp.237-249, 1981.

K. Li, M. Mousavi, and S. Hostikka, Char cracking of medium density fibreboard due to thermal shock effect induced pyrolysis shrinkage, Fire Safety Journal, vol.91, pp.165-173, 2017.

J. G. Quintiere and A. S. Rangwala, A theory for flame extinction based on flame temperature, Fire and Materials, vol.28, issue.5, pp.387-402, 2004.

J. L. Torero, T. Vietoris, G. Legros, and P. Joulain, Estimation of a total mass transfer number from the standoff distance of a spreading flame, Combustion Science and Technology, vol.174, issue.11-12, pp.187-203, 2002.

R. Emberley, T. Do, J. Yim, and J. L. Torero, Critical heat flux and mass loss rate for extinction of flaming combustion of timber, Fire Safety Journal, vol.91, pp.252-258, 2017.

A. Tewarson and R. F. Pion, Flammability of plastics?I. Burning intensity, Combustion and Flame, vol.26, pp.85-103, 1976.

A. I. Bartlett, R. M. Hadden, J. P. Hidalgo, S. Santamaria, F. Wiesner et al., Auto-extinction of engineered timber: Application to compartment fires with exposed timber surfaces, Fire Safety Journal, vol.91, pp.407-413, 2017.

R. Emberley, C. G. Putynska, A. Bolanos, A. Lucherini, A. Solarte et al., Description of small and large-scale cross laminated timber fire tests, Fire Safety Journal, vol.91, pp.327-335, 2017.

C. Mcgregor, Contribution of cross laminated timber panels to room fires

A. I. Bartlett, R. M. Hadden, J. P. Hidalgo, S. Santamaria, F. Wiesner et al., Auto-extinction of engineered timber: Application to compartment fires with exposed timber surfaces, Fire Safety Journal, vol.91, pp.407-413, 2017.

C. J. Bateman, A. I. Bartlett, R. L. Rutkauskas, and R. M. Hadden, Effects of fuel load and exposed clt surface configuration in reduced-scale experiments, World Conference on Timber Engineering, 2018.

R. Crielaard, J. Van-de-kuilen, K. Terwel, G. Ravenshorst, and P. Steenbakkers, Self-extinguishment of cross-laminated timber, Fire Safety Journal, vol.105, pp.244-260, 2019.

R. Emberley, A. Inghelbrecht, Z. Yu, and J. L. Torero, Self-extinction of timber, Proceedings of the Combustion Institute, vol.36, issue.2, pp.3055-3062, 2017.

N. Boonmee, University of Maryland, College Park: Department of Asian and East European Languages, adfl, pp.92-96, 2004.

J. Swann, J. Hartman, and C. Beyler, Study of Radiant Smoldering Ignition of Plywood Subjected to Prolonged Heating Using the Cone Calorimeter, TGA, and DSC, Fire Safety Science, vol.9, pp.155-166, 2008.

I. Pope, J. P. Hidalgo, A. Osorio, C. Maluk, and J. L. Torero, Thermal behaviour of laminated bamboo structures under fire conditions, Fire and Materials, 2019.

G. Erez, Modélisation du terme source d'incendie : montée enéchelleà partir d'essais de, 2019.

A. Camillo, Un système de recherche excellent, mais peu lié aux entreprises, 2013.

C. Vincent, Caractérisation du comportement au feu des matériaux de l'habitat : Influence de l'effet d'échelle, 2016.

J. Martinka, V. Mózer, E. Hroncová, and J. Ladomersk?, Influence of spruce wood form on ignition activation energy, Wood Res.-Slovakia, vol.60, issue.5, pp.815-822, 2015.

K. L. Friquin, M. Grimsbu, and P. J. Hovde, Charring rates for cross-laminated timber panels exposed to standard and parametric fires, Proceedings of the 11th World Conference on Timber Engineering, 2010.

L. Tsantaridis, Reaction to fire performance of wood and other building products, 2003.

D. Zeinali, A. Gupta, G. Maragkos, G. Agarwal, T. Beji et al., Study of the importance of non-uniform mass density in numerical simulations of fire spread over MDF panels in a corner configuration, Combustion and Flame, vol.200, pp.303-315, 2019.

D. Zeinali, S. Verstockt, T. Beji, G. Maragkos, J. Degroote et al., Experimental study of corner fires?Part I: Inert panel tests, Combustion and Flame, vol.189, pp.472-490, 2018.

D. Zeinali, S. Verstockt, T. Beji, G. Maragkos, J. Degroote et al., Experimental study of corner fires?Part II: Flame spread over MDF panels, Combustion and Flame, vol.189, pp.491-505, 2018.

J. Zhang, M. Delichatsios, and M. Colobert, Assessment of Fire Dynamics Simulator for Heat Flux and Flame Heights Predictions from Fires in SBI Tests, Fire Technology, vol.46, issue.2, pp.291-306, 2008.

D. Lipinskas and R. Ma?iulaitis, Further opportunities for development of the method for fire origin prognosis, Journal of Civil Engineering and Management, vol.11, issue.4, pp.299-307, 2005.

P. Boulet, G. Parent, Z. Acem, T. Rogaume, T. Fateh et al., Characterization of the radiative exchanges when using a cone calorimeter for the study of the plywood pyrolysis, Fire Safety Journal, vol.51, pp.53-60, 2012.

P. Cremona, Y. Billaud, T. Rogaume, F. Richard, and B. Batiot, Influence of a misalignment of the cone or the sample holder on the view factor with a Monte Carlo approach, Journal of Physics: Conference Series, vol.1107, p.032020, 2018.

M. Law, Performance of building elements in spreading fires, Fire Safety Journal, vol.1, issue.3, p.206, 1978.

S. R. Wasan, P. Van-hees, and B. Merci, Study of pyrolysis and upward flame spread on charring materials-Part I: Experimental study, Fire and Materials, vol.35, issue.4, pp.209-229, 2010.

L. Terrei, Z. Acem, V. Georges, P. Lardet, P. Boulet et al., Experimental tools applied to ignition study of spruce wood under cone calorimeter, Fire Safety Journal, vol.108, p.102845, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01873299

J. Cuevas, J. L. Torero, and C. Maluk, Flame extinction and burning behaviour of timber under varied oxygen concentrations, Fire Safety Journal, p.103087, 2020.

A. Atreya and M. Abu-zaid, Effect Of Environmental Variables On Piloted Lgnition, Fire Safety Science, vol.3, pp.177-186, 1991.

E. Mikkola and I. S. Wichman, On the thermal ignition of combustible materials, Fire and Materials, vol.14, issue.3, pp.87-96, 1989.